A short list of some useful R commands

help()
c ()
1:19
(...)
[...]
matrix()
dim()
head()
tail()
$m[, 3]$
$m[2, \quad]$
$=$ or $<-$
==
$<$
$>$
\&
|
sum ()
mean()
median()
sd()
var()
IQR()
summary()
round()
sort()
unique()
unique (x)
length (x)
hist()
stem()
boxplot()
plot()
cor()
lm()
names()
fit\$coef
fit\$fitted
fit\$residuals
lines()
abline()
points()
scan()
read.table()
table()
write()
$\log ()$
$\log 10()$
seq()
rep ()
getwd()
setwd()
dir()
search()
library()

```
#give help regarding a command, e.g. help(hist)
#concatenate objects, e.g. x = c(3,5,8,9) or y = c("Jack","Queen","King")
#create a sequence of integers from 1 to 19
#give arguments to a function, e.g. sum(x), or help(hist)
#select elements from a vector or list, e.g. x[2] gives 5, x[c(2,4)] gives 5 9 for x as above
#fill in (by row) the values from y in a matrix of 4 rows and 3 columns by giving
#m = matrix(y,4,3,byrow=T)
#gives the number of rows and the number of columns of a matrix, or a data frame
#gives the first 6 rows of a large matrix, or data frame
#gives the last 6 rows of a large matrix, or data frame
#gives the 3rd column of the matrix m
#gives the 2nd row of the matrix m
#assign something to a variable, e.g. x = c("a","b","b","e")
#ask whether two things are equal, e.g. x = c(3,5,6,3) and then x == 3 gives T F F T
#Then y[x == 3] gives those entries of y where x equals 3, i.e. the 1st and 4th entry of y
#ask whether x is smaller than y, e.g. x < 6 in the example above gives True True False True
#ask whether x is larger than y
#logical 'and'
#logical 'or'
#get the sum of the values in x by sum(x)
#get the mean of the values in x by mean(x)
#get the median of the values in x by median(x)
#get the standard deviation of the values in x
#get the variance of the values in x
#get the IQR of the values in x
#get the summary statistics of a single variable, or of all variables in a data frame
#round values in x to 3 decimal places by round(x,3)
#sort the values in x by giving sort(x)
#get the non-duplicate values from a list, e.g. x = c(3,5,7,2,3,5,9,3) and then
#gives 3 5 7 2 9
#gives the length of the vector x, which is 8
#create a histogram of the values in x by hist(x)
#create a stem and leaf plot of the values in x by stem(x)
#create a boxplot of the values in x by boxplot(x)
#scatterplot of x vs. y by plot (x,y); for more parameters see help(plot.default)
#gives the linear correlation coefficient
#fit a least squares regression of y (response) on x (predictor) by fit = lm(y~x)
#get or set the names of elements in a R object. E.g. names(fit) will give the names of the R
#object named "fit", or
#get or set the names of variables in a data frame.
#gives the least squares coefficients from the fit above, i.e. intercept and slope
#gives the fitted values for the regression fitted above
#gives the residuals for the regression fitted above
#add a (regression) line to a plot by lines(x,fit$fitted)
#add a straight line to a scatterplot
#add additional points (different plotting character) to a plot by points(x,y2,pch=5)
#read data for one variable from a text file, e.g. y = scan("ping.dat")
#Don't forget to change to the appropriate directory first
#read spreadsheet data (i.e. more than one variable) from a text file
#frequency counts of entries, ideally the entries are factors(although
#it works with integers or even reals)
#write the values of a variable y in a file data.txt by write(y,file="data.txt")
#natural logarithm (i.e. base e)
#logarithm to base 10
#create a sequence of integers from 2 to 11 by increment 3 with seq(2,11,by=3)
#repeat n times the value x, e.g. rep (2,5) gives 2 2 2 2 2
#get the current working directory.
#change the directory to. E.g. setwd("c:/RESEARCH/GENE.project/Chunks/")
#list files in the current working directory
#searching through reachable datasets and packages
#link to a downloaded R package to the current R session. E.g. library(Biostrings) link to the
#R package #called "Biostrings" which you had downloaded earlier onto your laptop
```


Input and Display

load("c:/RData/pennstate1.RData")
read.csv(filename="c:/stat251/ui.csv", header=T)
$x=c(1,2,4,8,16)$
$y=c(1: 10)$
vect=c (x,y)
mat=cbind (x, y)
mat $[4,2]$
mat [3,]
mat [,2]
\#load a R data frame
\#read .csv file with labels in first row
\#create a data vector with specified elements
\#create a data vector with elements 1-10
\#combine them into one vector of length $2 n$
\#combine them into a $n \mathrm{x} 2$ matrix
\#display the 4 th row and the 2 nd column
\#display the 3rd row
\#display the 2nd column

```
subset(dataset,logical)
subset(dataset,logical)
data.df[data.df=logical]
x[order(x$B),]
x[rev(order (x$B)),]
```

\#those objects meeting a logical criterion
\#logical criterion
\#yet another way to get a subset
\#sort a dataframe by the order of the elements in B
\#sort the dataframe in reverse order

Moving Around

ls ()	\#list the R objects in the current workspace
rm(x)	\#remove x from the workspace
rm(list=ls())	\#remove all the variables from the workspace
attach (mat)	\#make the names of the variables in the matrix or data frame \#available in the workspace
detach (mat)	\#releases the names
new=old[,-n]	\#drop the nth column
new=old[-n,]	\#drop the nth row
new=subset(old,logical)	\#select those cases that meet the logical condition
complete = subset(data.df, complete.cases(data.df)) \#find those cases with no missing values	
new=old[n1:n2, n3:n4]	\#select the n1 through n2 rows of variables n3 through n4)

Data Manipulation

```
x.df=data.frame(x1,x2,x3 ...) #combine different kinds of data into a data frame
scale() #converts a data frame to standardized scores
round(x,n) #rounds the values of x to n decimal places
ceiling(x) #vector x of smallest integers > x
floor(x) #vector x of largest interger < x
as.integer(x)
#truncates real x to integers (compare to round(x,0)
as.integer(x)
as.integer(x < cutpoint) #vector x of 0 if less than cutpoint, 1 if greater than cutpoint)
factor(ifelse(a < cutpoint, "Neg", "Pos")) #is another way to dichotomize and to make a factor for analysis
transform(data.df,variable names = some operation) #can be part of a set up for a data set
```


Statistical Tests

binom.test()
prop.test()
\#perform test with proportion(s)
t.test()
\#perform Chi-square test
chisq.test()
pairwise.t.test()
power. anova.test()
power.t.test()
aov()
anova()
TukeyHSD()
kruskal.test()

Distributions

